OpenCV C++ 예제 코드
프로그래밍/OpenCV2019. 6. 12. 19:17
OpenCV 공식홈의 예제 코드입니다.
파일 불러오는 경로만 살짝 수정했어요.
#include <opencv2/features2d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace std;
using namespace cv;
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers with homography check
const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
int main(int argc, char* argv[])
{
//! [load]
CommandLineParser parser(argc, argv,
"{@img1 | graf1.png | input image 1}"
"{@img2 | graf3.png | input image 2}"
"{@homography | H1to3p.xml | homography matrix}");
Mat img1 = imread(parser.get<String>("@img1"), IMREAD_GRAYSCALE);
Mat img2 = imread(parser.get<String>("@img2"), IMREAD_GRAYSCALE);
Mat homography;
FileStorage fs(parser.get<String>("@homography"), FileStorage::READ);
fs.getFirstTopLevelNode() >> homography;
//! [load]
//! [AKAZE]
vector<KeyPoint> kpts1, kpts2;
Mat desc1, desc2;
Ptr<AKAZE> akaze = AKAZE::create();
akaze->detectAndCompute(img1, noArray(), kpts1, desc1);
akaze->detectAndCompute(img2, noArray(), kpts2, desc2);
//! [AKAZE]
//! [2-nn matching]
BFMatcher matcher(NORM_HAMMING);
vector< vector<DMatch> > nn_matches;
matcher.knnMatch(desc1, desc2, nn_matches, 2);
//! [2-nn matching]
//! [ratio test filtering]
vector<KeyPoint> matched1, matched2;
for (size_t i = 0; i < nn_matches.size(); i++) {
DMatch first = nn_matches[i][0];
float dist1 = nn_matches[i][0].distance;
float dist2 = nn_matches[i][1].distance;
if (dist1 < nn_match_ratio * dist2) {
matched1.push_back(kpts1[first.queryIdx]);
matched2.push_back(kpts2[first.trainIdx]);
}
}
//! [ratio test filtering]
//! [homography check]
vector<DMatch> good_matches;
vector<KeyPoint> inliers1, inliers2;
for (size_t i = 0; i < matched1.size(); i++) {
Mat col = Mat::ones(3, 1, CV_64F);
col.at<double>(0) = matched1[i].pt.x;
col.at<double>(1) = matched1[i].pt.y;
col = homography * col;
col /= col.at<double>(2);
double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) +
pow(col.at<double>(1) - matched2[i].pt.y, 2));
if (dist < inlier_threshold) {
int new_i = static_cast<int>(inliers1.size());
inliers1.push_back(matched1[i]);
inliers2.push_back(matched2[i]);
good_matches.push_back(DMatch(new_i, new_i, 0));
}
}
//! [homography check]
//! [draw final matches]
Mat res;
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
imwrite("akaze_result.png", res);
double inlier_ratio = inliers1.size() / (double)matched1.size();
cout << "A-KAZE Matching Results" << endl;
cout << "*******************************" << endl;
cout << "# Keypoints 1: \t" << kpts1.size() << endl;
cout << "# Keypoints 2: \t" << kpts2.size() << endl;
cout << "# Matches: \t" << matched1.size() << endl;
cout << "# Inliers: \t" << inliers1.size() << endl;
cout << "# Inliers Ratio: \t" << inlier_ratio << endl;
cout << endl;
imshow("result", res);
waitKey();
//! [draw final matches]
return 0;
}
#include <iostream> // for standard I/O
#include <string> // for strings
#include <iomanip> // for controlling float print precision
#include <sstream> // string to number conversion
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
using namespace std;
using namespace cv;
double getPSNR ( const Mat& I1, const Mat& I2);
Scalar getMSSIM( const Mat& I1, const Mat& I2);
int main(int argc, char *argv[])
help();
if (argc != 5)
{
cout << "Not enough parameters" << endl;
return -1;
}
stringstream conv;
const string sourceReference = argv[1], sourceCompareWith = argv[2];
int psnrTriggerValue, delay;
conv << argv[3] << endl << argv[4]; // put in the strings
conv >> psnrTriggerValue >> delay; // take out the numbers
char c;
int frameNum = -1; // Frame counter
VideoCapture captRefrnc(sourceReference), captUndTst(sourceCompareWith);
if (!captRefrnc.isOpened())
{
cout << "Could not open reference " << sourceReference << endl;
return -1;
}
if (!captUndTst.isOpened())
{
cout << "Could not open case test " << sourceCompareWith << endl;
return -1;
}
Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
(int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)),
uTSi = Size((int) captUndTst.get(CV_CAP_PROP_FRAME_WIDTH),
(int) captUndTst.get(CV_CAP_PROP_FRAME_HEIGHT));
if (refS != uTSi)
{
cout << "Inputs have different size!!! Closing." << endl;
return -1;
}
const char* WIN_UT = "Under Test";
const char* WIN_RF = "Reference";
// Windows
namedWindow(WIN_RF, CV_WINDOW_AUTOSIZE);
namedWindow(WIN_UT, CV_WINDOW_AUTOSIZE);
cvMoveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0)
cvMoveWindow(WIN_UT, refS.width, 0); //1500, 2
cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height
<< " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;
cout << "PSNR trigger value " << setiosflags(ios::fixed) << setprecision(3)
<< psnrTriggerValue << endl;
Mat frameReference, frameUnderTest;
double psnrV;
Scalar mssimV;
for(;;) //Show the image captured in the window and repeat
{
captRefrnc >> frameReference;
captUndTst >> frameUnderTest;
if (frameReference.empty() || frameUnderTest.empty())
{
cout << " < < < Game over! > > > ";
break;
}
++frameNum;
cout << "Frame: " << frameNum << "# ";
///////////////////////////////// PSNR ////////////////////////////////////////////////////
psnrV = getPSNR(frameReference,frameUnderTest);
cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
//////////////////////////////////// MSSIM /////////////////////////////////////////////////
if (psnrV < psnrTriggerValue && psnrV)
{
mssimV = getMSSIM(frameReference, frameUnderTest);
cout << " MSSIM: "
<< " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%"
<< " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%"
<< " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%";
}
cout << endl;
////////////////////////////////// Show Image /////////////////////////////////////////////
imshow(WIN_RF, frameReference);
imshow(WIN_UT, frameUnderTest);
c = (char)cvWaitKey(delay);
if (c == 27) break;
}
return 0;
}
double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2
Scalar s = sum(s1); // sum elements per channel
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse = sse / (double)(I1.channels() * I1.total());
double psnr = 10.0 * log10((255 * 255) / mse);
return psnr;
}
}
Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
const double C1 = 6.5025, C2 = 58.5225;
/***************************** INITS **********************************/
int d = CV_32F;
Mat I1, I2;
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d);
Mat I2_2 = I2.mul(I2); // I2^2
Mat I1_2 = I1.mul(I1); // I1^2
Mat I1_I2 = I1.mul(I2); // I1 * I2
/*************************** END INITS **********************************/
Mat mu1, mu2; // PRELIMINARY COMPUTING
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
GaussianBlur(I2, mu2, Size(11, 11), 1.5);
Mat mu1_2 = mu1.mul(mu1);
Mat mu2_2 = mu2.mul(mu2);
Mat mu1_mu2 = mu1.mul(mu2);
Mat sigma1_2, sigma2_2, sigma12;
GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
sigma1_2 -= mu1_2;
GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
sigma2_2 -= mu2_2;
GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
sigma12 -= mu1_mu2;
///////////////////////////////// FORMULA ////////////////////////////////
Mat t1, t2, t3;
t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
Mat ssim_map;
divide(t3, t1, ssim_map); // ssim_map = t3./t1;
Scalar mssim = mean(ssim_map); // mssim = average of ssim map
return mssim;
}
댓글 영역